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Dynamics of Photoexcitation and Photocatalysis at Nanostructured Carbon Interfaces 

Michael S. Arnold, Robert J. Hamers, and Martin T. Zanni 

Department of Materials Science and Engineering and Department of Chemistry 

University of Wisconsin-Madison 

Abstract  

During this grant, we have made major contributions to the understanding and practice of photoexcitation 

and photocatalysis at nanostructured carbon interfaces.  There were two aspects to this grant. One aspect 

was to study the dynamics of films of carbon nanotubes for next generation photovoltaics and 

photodetectors.  The other was to study the dynamics of CO2 reduction using solvated electrons. We made 

excellent progress on both fronts, with each direction leading to publications in high-impact journals. 

With regard to the carbon nanotubes, the highlight was developing a new technique that we called two-

dimensional white-light (2D WL) spectroscopy. With it, we mapped the energy flow through thin films of 

semiconducting carbon nanotubes with unprecedented resolution. We learned that energy does not hop 

between parallel tubes as one might expect from typical resonant-types of energy transfer processes, but 

instead occurs at the intersections between tubes, leading to dramatic changes in the direction of energy 

propagation.  This work was published in Nature Communications.  Regarding CO2 reduction, we 

demonstrated highly selective photochemical reduction of CO2 to CO with virtually no reduction of 

hydrogen (published in Angewandte Chemie) and have explored how to optimize this process using an 

understanding of the kinetics of solvated electron reactions. At moderate (10-20 atmosphere) pressures of 

CO2 the rate of CO2 reduction greatly exceeds the rate of H+ reduction at pH=3.5, yielding high 

selectivity for CO2 reduction over H+ reduction. Selective reduction of CO2 without oxidation of the 

diamond photocatalyst also requires providing a mechanism for a corresponding oxidation reaction, either 

by using a secondary Pt electrode or by including a hole scavenger such as sulfite. We have since 

identified conditions under which CO2 can be also reduced to CO using inexpensive diamond 

nanocrystals, like that commonly used as a polishing grit. 

Detailed Accomplishments: 

1. Dynamics of energy transport in coupled carbon nanotube materials for next generation solar cells 

In previous annual reports we summarized our experiments using pump-probe spectroscopy to probe 

energy transfer in thin films of electronic-type controlled semiconducting carbon nanotubes. 

Semiconducting carbon nanotubes are intriguing materials for photovoltaic and photodetector devices, as 

well as FETs and other devices, because they have strong optical absorptivity, ultrafast charge and energy 

transport, excellent stability, and economical solution-processability.  We made excellent progress in 

better characterizing these exciting materials and in the synthesis of variations of these thin films. The 

pump-probe experiments were published in ACS Nano and Nano Letters, which are premiere journals for 

the nanosciences. 

During the last year of this great, we made a technological breakthrough in the way that energy transfer 

can be monitored in these and many other materials. The absorption spectrum of this film stretches from 

the visible to the near-infrared, which is a good property for light harvesting applications, but makes it 

difficult to study experimentally. The standard approach is to study one electronic transition at a time, 

using a tunable pump pulse followed by a continuum probe pulse, like we did in the first two years of our 



grant. Now, we have developed a new technique that we call two-dimensional white light spectroscopy 

(2D WL). 2D WL spectroscopy uses a broadband continuum as the pump source that enables us to 

simultaneously examine a spectral range spanning from 500-1400 nm. The 2D WL spectra resolve energy 

transfer between all possible combinations of excitonic states in the band gap-selected nanotubes, thereby 

providing an instantaneous and comprehensive snapshot of the dynamical pathways. We observe exciton 

hopping, exciton dissociation, and anti-correlated energy levels; all of which have important implications 

in the development of carbon nanotube electronics and optoelectronics. This work was published in 

Nature Communications.  We have also demonstrated it on quantum dots and on pentacene thin films to 

establish it as a general tool for measuring energy transfer.  We are very excited about this technique and 

have been getting much attention for its implementation.  

Accomplishments in synthesizing tailored coupled carbon nanotube materials and devices:  We have 

post-synthetically isolated two populations of electronic-type sorted semiconducting carbon nanotubes, 

with bandgap distributions tailored for photovoltaic devices, for measurements of ultrafast 

photoexcitation dynamics in isolated thin films and solar cells made from coupled nanotubes.  First, we 

have used poly(fluorene) derivatives to isolate an intentionally polydisperse mixture consisting of 5 

discrete bandgaps of nanotubes ranging from 1.17 eV to 0.93 eV.  Each nanotube can be spectrally 

resolved, allowing us to map inter-nanotube energy transfer kinetics.  Second, we have isolated nearly 

monochiral (7, 5) nanotubes with a bandgap of 1.17 eV, allowing us to probing energy transfer kinetics 

without energy loss. We have learned so far how to decrease and increase inter-nanotube coupling in 

nanotube thin films by controlling the polymer:nanotube ratio within the films. Moreover, we have 

discovered how to tailor inter-tube coupling by controlling the film morphology. Towards this end, we 

have discovered how to create extremely porous and low density films of semiconducting nanotubes by 

co-casting the nanotubes with a sacrificial polymer and eliminating the polymer using a critical point 

drying process. This process creates aerogel structures that are 99.8% porous. These samples were 

instrumental as controls in our ACS Nano paper for determining the mechanisms of inter-fiber energy 

transfer because the fibers are so well separated in these samples that inter-fiber energy transfer is 

suppressed. Moreover we discovered that the pores can be back-filled with solution-processable C60-

derivative electron acceptors and the films then partially re-condensed to create bulk heterojunctions with 

improved power conversion efficiency compared to planar devices (published in Small).  

 

2.  Dynamics of CO2 reduction via solvated electrons 

During the last year we identified conditions necessary to achieve highly selective photochemical 

reduction of CO2 to CO in aqueous media. One of the most striking aspects of this work is that by using 

modest internal pressures in the photolyss cell, we are able to almost completely eliminate the 

electrochemical reduction of H+ to the hydrogen atom  H+ + e-
(aq)  H• (aq).  This is an important result, 

because in virtually all previous studies of CO2 reduction in aqueous media, formation of H2 is the 

predominant product. This remarkable selectively  for CO2 reduction is due in large part to the kinetic 

rates of electron-transfer reactions:  Although the rate constant for H+ + e-
(aq)  H• (aq) is large, by using 

modest (10-20 atmospheres) for pCO2, the overall rate for CO2 + e-
(aq)  CO2

-
(aq) can be made to exceed 

that for H+ + e-
(aq)  H• (aq), leading to >95% selectivity for CO2 reduction even at pH=3.5.  A second 

critical parameter is having a mechanism for removing valence-band holes before they induce oxidation 



of the diamond (which also forms CO). Every electron emitted from diamond must be accompanied by an 

oxidation process to maintain charge neutrality; however, diamond’s shallow valence band position yields 

only low rates for the necessary oxidation processes.  We found two approaches to solving this problem: 

(1) using a secondary Pt electrode to oxidize water, or (2) including a hole scavenger (such as sulfite) in 

the reaction mixture. The use of a small (~ -0.5 V) potential to the diamond also helps. We confirmed 

selectivity of reaction and the absence of competing oxidation of diamond itself using isotope labeling 

studies. Our experiments showed that gas-phase 13CO2 yielded exclusively 13CO with no significant 12CO.   

While our initial work indicated that nanodiamond was particularly prone to oxidation, we also found that 

inexpensive diamond nanopowder (<125 nm) can achieve similarly high selectivity provided that a 

suitable hole scavenger is used. Product distributions were measured by FTIR and NMR spectroscopy. 

Illumination-induced changes in diamond nanoparticle oxidation state and aggregation state were also 

performed.  Ultimately this work demonstrates that inexpensive diamond nanopowder can be an effective 

homogeneous photocatalyst for CO2 reduction. 

We also provided diamond electrodes for investigations by Dr. Tim Berto in Prof. John Berry’s group 

investigating the electrolyte composition on the electrochemical reduction of CO2. That work showed 

that, contrary to reports published by other groups, tetraalkylammonium ions are not catalysts for CO2 

reduction. 
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